一块10厘米的硅晶圆,上面有使用B-EUV光刻技术制作的大型可见图案。图片来源:美国约翰斯·霍普金斯大学
科技日报记者 张梦然
一个国际联合团队在微芯片制造领域取得关键突破:他们开发出一种新型材料与工艺,可生产出更小、更快、更低成本的高性能芯片。该研究结合实验与建模手段,为下一代芯片制造奠定了材料与工艺基础。相关成果发表在最新一期《自然·化学工程》杂志上。
随着电子产品对性能要求的持续提升,芯片制造商亟须在现有生产线上实现更精细电路的刻蚀。尽管能够实现这一目标的高功率“超越极紫外辐射”(B-EUV)技术已具备雏形,但传统光刻胶材料难以有效响应此类辐射,成为技术升级的主要瓶颈。
为此,美国约翰斯·霍普金斯大学、布鲁克海文国家实验室及劳伦斯伯克利国家实验室,联合中国华东理工大学、苏州大学,以及瑞士洛桑联邦理工学院共同展开研究,探索使用金属有机材料作为新型抗蚀剂。这类材料由金属离子(如锌)与有机配体(如咪唑)构成,在B-EUV辐射下能高效吸收光子并产生电子,从而引发化学变化,精确地在硅片上形成纳米级电路图案。此前研究已证明其潜力,但如何在晶圆尺度上均匀、可控地沉积此类材料仍是难题。
此次团队开发出名为“化学液体沉积”的新工艺,首次实现了在溶液中的硅片上大面积沉积咪唑基金属有机抗蚀剂,并能以纳米级精度调控涂层厚度。该方法通过调节金属种类与有机分子的组合,灵活调整材料对特定波长辐射的响应效率。
研究显示,至少有10种金属和数百种有机物可用于构建此类材料体系,为未来优化提供了广阔空间。例如,锌虽不适用于当前极紫外光刻,却在B-EUV波段表现出优异性能。团队相信,这项技术有望在未来十年内投入工业应用。
总编辑圈点
想让芯片性能更强、体积更小,关键在于能否在硅片上“雕刻”出更精细的电路。这个“雕刻”过程就是光刻。它的优化改进需要材料与工艺的协同创新,就像一位工匠同时升级“画笔”和“颜料”。以这项研究成果为例,使用金属有机材料作为新型抗蚀剂,能够精确地在硅片上形成纳米级电路图案,但充分发挥这种材料的潜力,需要研发配套的先进工艺。这些新探索将不断推动芯片性能持续飞跃,从而有望打破摩尔定律的“天花板”。